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Abstract

The ghost cell approaches (GCA) for handling stationariddwbundaries, regular or ir-
regular, are first investigated theoretically and numdyidar the diffusion equation with
Dirichlet boundary conditions. The main conclusion of thést of investigation is that the
approximation for the diiusion term has to be second-order accurate everywhere én ord
for the numerical solution to be rigorously second-orderuaate. Violating this principle,
the linear and quadratic GCAs have the following shortcasir{1) restrictive constraints
on grid size when the viscosity is small; (2) susceptibleriesnstability of a time-explicit
formulation for strongly-transient flows; (3) convergerimterioration to zeroth order or
first order for solutions with high-frequency modes. Theref the widely-used linear ex-
trapolation for enforcing no-slip boundary conditions gliobe avoided, even for regular
solid boundaries. As a remedy, a simple method based oncéxplnp approximation
(EJA) is proposed. EJA hinges on the idea that a velocitivaiégre jump at the bound-
ary reduces to the value of the velocity-derivative at thlfhide because the velocity of
the stationary boundary is zero. Although the time-marghinear system of EJA is not
symmetric, it is strictly diagonal dominant with positiveagonal entries. Numerical results
show that, over a large range of viscosity and grid sizes, ieHorms much better than
GCAs in terms of stability and accuracy. Furthermore, theosd-order convergence of
EJA does not depend on viscosity and the spectrum of thei@ojis those of GCAs do.
This paper is written with enough details so that one carodepre the numerical results.
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1 Introduction

For any irregular domain with smooth boundaries, a smoatictfan can be ex-
tended across a boundary with a bound on the relative ineiadke error norms.
This is the essential idea behind the ghost cell approaciA\jG®ith the ghost cell
values updated by extrapolating from inside the fluid phds®poundary condi-
tions at the solid-fluid interface are implicitly fulfilledhis approach dates back
to Mayo [13] in 1980s and has been widely adopted by reseecbae group
of examples [18,1] concerns the Immersed Boundary (IB) otkthith the finite
difference formulation.

There exist numerous ways of obtaining the ghost cell valmest of them are
variants of two formulas: the linear extrapolation via iragapints, hereafter re-
ferred to as GC1, and the quadratic extrapolation via patyabfitting, hereafter
referred to as GC2. Both GC1 and GC2 have been widely useéatirig irregular
boundaries, see [20] and [18] for two examples and [16] foidewwerspective.

This paper considers the nonhomogeneoffsision equation,

ou

— =yVu+ f(x,1), 1
o = VYU () (1)
wherex € RP is the location vectot the temporal coordinate, = u(x,t) a con-
tinuous scalar function with its value being a constant zgthin the solid phase,
v the dynamic viscosity, and the forcing teri{x, t) is knowna priori. In this and

the next sections, we will focus on the one-dimensionaligarsf (1):

ou 9

E = Va—yz + f(y, t), (2)

wherey denotes the vertical coordinate. The solid-fluid interfisdecated ayg =

bh, with h being the uniform mesh spacing, as shown in Fig. 1. The regoland-
ary case in Fig. 1 (a) can be considered as a special case ofatelar bound-
ary case in Fig. 1 (b) withb = 0. Without loss of generality, it is assumed that
be [—% %) and the discretization afis cell-centered. The value afin the jth cell

is represented by;, located aty; = (j + %) h.

Referring to Fig. 1 (b), the image point wuf; with respect to the interface is located
atYimage = (2b + % h, where a linear interpolation yieldnage = 2bu; + (1 - 2b)u.
GC1 sets the ghost cell value by

u(_Bfl = 2Uug — Uimage (3)

Whenb = 0 (i.e., regular boundary) angs = 0, (3) reduces to the well-known no-
slip conditionu_; = —ug for regular boundaries, as shown in Fig. 1 (a). Since (3)
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Fig. 1. Cells in the vicinity of the solid-fluid interface. diit gray area represents the solid
phase and white area is occupied by the fluid phasgis a boundary condition to be
specified. ¢’ represents the image pointof;.

is linear, using a higher order interpolation i@.ge does not improve the overall
accuracy unless more image points are introduced.

In GC2, the ghost cell value is evaluated by fitting a quadiadlynomial near the
interface:

use? = n(—g), (4)

o (y=3n)(y-3n)  (y-3h)y-bh  (y-3n)(y-bh

0y) = _3 _5 2UB+ 2(ph— 3 th = 2(h_ 5 U2,
(b-3)(b-3)h e (b-3) e (b-3)

where the irregular cell valug, is excluded to prevent instabilities frobnx %

Taylor expansions of (3) and (4) w yield

UK +u —2up  HPu <ty
L - Al =T G| +oh), (5)
Y 0 0
where

~1—8b+ 407

el - —82” b (6a)
142

T 20 °h (6b)

It is clear from (5) that GCk introduces error ©{h*™1) in approximating the dif-
fusion term near the solid-fluid interface. For an explieitend-order method, one
can expect that the errors near the solid-fluid interfac@gyate to the interior of



the fluid phase by numericalfélision and the accuracy is less than second-order, at
least in theco-norm sense. However, explicit treatment of thudiion term incurs

a restrictive time step constraint ~ O(h?) and the difusion term is usually han-
dled implicitly to avoid this constraint. This immediatelgises a question on how

a solution of (1) is influenced by perturbations of codimensine.

For Poisson’s equation, it is well-known that the pertudoa from GCA are neg-
ligible for solvers with second-order convergence. By eixémg the error equation
for Poisson’s equation, Johansen and Colella [6] showeadaltfeough GC2 gen-
erates a first-order truncation error on the boundary, theiea error induced is
third-order; thus the second-order convergence rate isnflaenced. McCorquo-
dale et al. [14] also confirmed that both GC1 and GC2 are seoadel accurate
and even the solution gradient of GC2 is second-order ateeuka for the difusion
equation, Gibou and Fedkiw [4] claimed that a cubic extrapoh yields fourth-
order accuracy of the solution, their supporting numettesats only consisting of
single Fourier modes with exponentially decaying ampbtidowever, we believe
that dfects of boundary perturbations on théfaéion equation is very terent
from those on Poisson’s equation. As will be proved in Sec®@ diffusion equa-
tion solver has to approximate the dffusion term to kth order accuracy every-
where inside the domain in order to be rigorouslykth order accurate. This
requires that the extrapolation near the boundary be(k + 2)th order accurate.
Although sometimes a lower order extrapolation may achgager-convergence
for solutions with a finite spectrum, this super-convergetiaes not apply to solu-
tions with infinite spectrum, especially when viscositynsadl.

In particular, GC1 and GC2 has asymptotic convergence oisk@and third-order
for solutions with low-frequency modes; but they are onlyotde-order and first-
order accurate for some test cases in Section 4. Even whgadhexhibit second-
order convergence, their errors are much larger than thiabe @roposed explicit
jump approximation (EJA) method in a wide range of grid sizsswill be shown
in Section 4.3. Furthermore, the asymptotic convergenc&@A requires the grid
size to be smaller than a ‘critical’ grid size, which can belpbitively small as

viscosity is reduced. This coupling of convergence ratedoosity is undesirable.
In addition to the accuracy issues, instability of an expfamrmulation of GCA is

also reported in Section 4.2.

A straightforward way to improve the accuracy of GCA in oneensional space is

to fit a cubic or even higher-order polynomial near the séilidd interface so that
the difusion term is uniformly approximated to second order evéene inside

the fluid phase. However, in multi-dimensional spaces agxtiations from dter-

ent dimensions yield éierent values, as shown in Fig. 4. There are three ways
to address this issue: (1) using a linear combination ofetleEmflicting values
[1]; (2) storingD ghost values at each ghost cell; (3) resort to multi-dimmamei
polynomial-based interpolation. In the last choice, thmalagth order polynomial
must hav¢®;?) terms including all the coordinates and their cross ternpseeerve



(g—1)th order-of-accuracy of the Laplacian term. For examgfeurth-order solver
in three-dimensional space involves fitting a fifth-ordelypomial, requiring solv-
ing at least a 5& 56 linear system for each ghost cell value.

An alternative method to overcome the above twiidilties is to treati as a func-
tion with discontinuities at the solid-fluid interface amgtorporate the jump con-
ditions into the discretization stencils. The Immerseefizsice Method (1IM) [10]
is an example. Although the IIM was originally designed fdipéc problems, it
has been extended to Stokes flows [11], Poisson’s equafiopg@bolic equations
[21,5], and incompressible Navier-Stokes equations [128plications to rigid,
flexible and moving boundaries [23,8] were also reportede @fficulty of the
[IM, however, is the lack of jump conditions for high-ordegrivatives. To avoid
this challenge, Zhong [29] and Zhou [30] have proposed thveir high-order meth-
ods for solving elliptic equations by using two jump conalits for the value of the
variable and its first-order derivative. Mathematicalhg$e methods are equivalent
to explicitly approximating high-order derivatives byrest Taylor expansion or lo-
cal polynomial fitting. However, in the case of a rigid solidgse, even the jump
conditions on the first-order derivatives are unavailable.

Fortunately, the velocity and its derivatives for statigreolid-fluid interface are all
zero. Thus, the velocity-derivative jumps reduce to theeabf velocity-derivatives
on the fluid side. This fact leads to the explicit jump appnaiion (EJA) method
formulated in Section 3. Unlike the GCA, the extrapolatiarget of EJA is the
interface, not the ghost cell. As will be shown in Fig. 4 in @&t 3.2, the extrap-
olation of EJA is essentially one-dimensional becausesetgions of the interface
to different directions are distinct. This permits a simple gdrzaton to multi-
dimensional spaces in a dimension-by-dimension way.

Similar to the 1IM, EJA is based on the generalized Tayloraggion and discretiza-
tion stencils are locally modified near the interface; umlitv, EJA approximates
the jump conditions explicitly by extrapolation insteaddsriving it from phys-

ical constraints. Also, the jumps in EJA are with respecthi® ¢toordinates, not
with respect to the normal direction of the interface. Theseilt in a simpler for-

mulation without requiring jump-condition derivation alotal-global coordinate
transformations. Roughly EJA can be viewed as an 1IM spieidlfor stationary
solid-fluid interfaces.

The rest of this paper is organized as follows. Section 2 arsthe question on
how a solution of (1) is influenced by perturbations near tigldluid interface,
motivating the development of EJA in Section 3, where thestimarching linear
system of EJA is shown to be strictly diagonally dominantctiea 4 evaluates
the stability and accuracy of EJA and GCA via extensive test:ne-, two- and
three- dimensional spaces. Finally, Section 5 outlinagéxvork for coupling EJA
to the Polygonal Area Mapping method (PAM) [26] and HyPAM |28 form a
three-phase model including gas, fluid and solid.



2 An Error Analysis

Consider the one-dimensional homogeneotsision equation

ou  d%u

e (u,t) € [0, 1] x [0, o) (7)

with initial and boundary conditions as

u(y,.0)=e(y).  u(0.t)=u(l,t)=0. (8)

Handling the solid-fluid interface gt= 0 by GCA adds into (7) a nonhomogeneous
term that is zero everywhere except near the interface:

ou  d%u

E = Va—yz + T(y, t), (9)

whereT (y, t) can be deduced from (5) as

yTOK(t) ukd|, yel0,h]

Ty, t) = T(t) = {O yehi] (10)

with u®b)|, as the value of thek(+ 1)th spatial partial derivative dt T(y,t) is
2

assumed to be independentyofvithin the computational cell abutting the solid-
fluid interface.

In the following we shall derive the exact solutions of theoed homogeneous
and nonhomogeneous problems; theifedence yields the solution error caused
by T (y, t). The derivation can also be generalized tifudiion equations with Robin
boundary conditions [2].

If x andt are separable, the solution of (7) and (8) can be derived as

U, 1) = ) ene'™ sinmiy), (11)

m=1

wherel, = —m?n? is themth eigenvalue of the second-order spatial derivative and

1
Gm =2 fo ¢(2) sin(mrz) dz (12)

To accommodate the nonhomogeneous term, we seek a soltif@nmthe form

u(x,t) = i Um(t) sin(mry), (13)
m=1



by setting

1
Tolt) = 2 fo T(z 1) sin(mr2) dz

h
= 2yTEX u("+1)|,_1 f sin(mrz) dz

_ Ck | (k1) mrh
= 4yTO* b)), — ) — |n2( 2) (14)
so that .
T, 1) = ) Tu(t) singmry). (15)
m=1

Substitution of (15) and (13) into (9) yields a series ofialivalue problems, from
which the solution of (9) can be obtained as

Uy, t) = ) g™ sinmy) + &, (16)
m=1
where the contribution of the nonhomogeneous term is

&y, t) = i ( fo t e 9T (9) ds) sin(mry). (17)
m=1

Since (11) and (16) are solutions to (7) and (9), respegtiyr) is indeed caused
by the leading truncation error of GCA.

Substituting (14) into (17) yields

E.t) = Z (ﬁanQ(sm(rm)’) f yetm(t=9) u(k+1)| dS) (18)

m=1

wheresC™* = O(h*1). In particular, ifo = 0 in (6), then
GCl — _gir? ( ) (19a)

GC2 _ oh i (”‘”h) (19b)

The integral in (18) represents the coupling of perturlreti'om GCA and the
temporal error accumulation. Becau§@1)| dsis independent of the wave num-

berm, the summation with respect toin general does not cancel. This nonlinear
coupling of time and spatial Fourier modes accounts for thele diference be-
tween Poisson’s equation and thédsion equation on how the solution reacts to
the perturbations at the boundary.



Based on (18) and (19), the following can also be deduced:

() For a single Fourier modme, giveny,t, GC1 and GC2 are asymptotically
second-order and third-order accurate, respectively, i.e

BSCt~ O(?) F$%OW) (20)

h—-0=
&$AOW) €52 ~ o)

(II) Let the solution (11) have a finite number of Fourier med@dmy,,« be the
largest wave number. Define a critical grid size as

2
7Trnmax'

(21)

hcrit =

Within the range of grid sizes such thHat> hgi;, GC1 and GC2 are only
zeroth-order and first-order accurate, respectively. Dejpg on the spec-
trum of the solutionhgi; might be small and the range of lower-order con-
vergence is then large.

(111 In practice, one often observes second-order corerarg for GC1 and GC2
in the numerical tests of thefelision equation because either the solution
contains only low frequency modes (e.g. [4]) or high-freqmemodes are
quickly damped out. The ‘damping capacity’ of the physigatem relates
to viscosity: the higher the viscosity, the faster high treaqcy modes are
damped. When viscosity is very small, high-frequency ergersist due to
slow damping. For GC1 and GC2, their second-order conveggsates thus
depend on a large viscosity to damp out their low-order tatina errors, see
also the argument after (38) and (39) for a precise explamafis another
way to understand this, |€t= vt, (7) can be viewed as another heat equation
with a changed time variable and unit viscosity; a smaitectively changes
a transient solution itf to a steady solution it

(IV) Due to the presence of the forcing terfy, t), the nonhomogeneousfiii-
sion equation (1) might have high-frequency modes pengjgtor even in-
creasing) over time. Examples include the pressure-disteady flow and
impinging jet on a solid-fluid interface, in both scenaribe pressure gra-
dient and the advection term serve as the combined forciny tEherefore,
coupling convergence rate to viscosity has a negative itrgrathe solution
accuracy of many practical applications because highisrqy modes do
not alwaysdie out.

(V) If the diffusion term is approximated to second-order near the boyrttian
E~ O(h2 sinz(’%“)) and the second-order convergence rate does not depend
on the spectrum of the solution. This is the case with cubi&@@d EJA.

Numerical experiments in Section 4 will confirm these rersaflogether with the
instability of time-explicit GCA shown in Section 4.2, theyotivate EJA formu-
lated in the next section.



3 The Explicit Jump Approximation Method

In this section, the EJA method is fully detailed for the nomogeneous diu-
sion equation (1) with irregular solid-fluid interfaces.tWn its framework, simply
changing the jump correction form also implements GCA. Iiiportant to point
out that many projection methods for the Navier-Stokes ggs use this proce-
dure to obtain intermediate results. Thus, the algorithetdeed here is not only
pertinent to the dfusion equation, but also applicable to a wider context.

3.1 Mathematical foundation

Like the IIM, the theoretical foundation of the EJA methothis generalized Taylor
expansion, which has already been proved in literatur@{2,

Theorem 1 (Generalized Taylor Expansion)Assume function(g) has m discon-
tinuity points of the first kind atyyys, - - - , Ym N (Yo, Ymi1), Yo < Y1 < -+ < Yms1 @nd
aly) € C*(Yo, Y1) U (Y1,¥2) U - - - U (Y, Ymr1), @S shown in Fig. 2. ) can be either
continuous or discontinuous ag gnd y,1. Let

|[a” ]| = a0 - d(w) (22)

denote the jump of the nth derivative where 0,1,2,--- andi=1,2,--- ,m, then

(n) m oo (n)
g(yaﬂ)—z (W)(ymﬂ—yo)wzz I (y)“(ym+1—yi>“, (23a)

n=0 n: i=1 n=
) m e {[g™(y:)
i) = 3, Ty ST M( Y-y (23b)
n=0 i=1 n=0

Theorem 1 gives rise to a generalized finitfetiencing that can be applied to
functions with discontinuities.

Proposition 2 (Generalized Central Finite Diference) Let .1 -y = y;—Yj-1 =
h>O0andy.1 <@ <yj <B <Y UY) € C(Yj-1,@) U (@, B) U (B, Yj+1). Then

du(y;) _ulyj.s) - ulyiy)
dy 2h
Sl 0]

_2_]|-‘]Z YJl_a) +Z

n=0

(s - B)" |+ O(h?),
(24)
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Fig. 2. A functiong(y) with finite discontinuitiesg(y) is continuous ay; while its deriva-
tives are not. In contrasgy(x) and all its derivatives are discontinuousyat

Fuly]) _u(yj.) +Ulyyy) — 2u(y;)
dy? h?
3 u(”)(a)] 3 [[U(”)(B)”

tis Z VEETEDY

n=0

———(¥js1 = B)"| + O(H?).
(25)

PROOF. Using (23) to expand(y;.1) andu(y;_1) aty; yields (24) and (25).

According to Proposition 2, when there is only one jump betwg_; andy;., the
location of the jump has to be compared wythin order to select the proper form
of a velocity derivative jump. Thus, for the configuratiorFig. 1 (b), (25) reduces
to

Pul  wrug-2u 1 |[u(ys)] X

v R ;—(yl—yﬁo +O(W),  (26)
whereys is the location of the interface betwegn andy,, assuming no interface
exists betweewy andy;.

Identifying u as velocity for physical variable, the continuitywfmplies

[[ullg = 0= u(yg) = u(ys) = Ue,

where the speed of the solid phasg, is assumed to be identically zero, which
further implies that the velocity derivatives of the solidgse are zero. Hence, for
n>1,
7] = 0 - w00 oL
-u"(yg), VYgisinfluid

In other words, jumps of the derivatives are reduced to thwvateves at the fluid
side, due to the assumptionwbeing zero in the solid phase and continuous in the
whole domain.

10



In Appendix the jumps of derivatives in (25) are approxindage that the second
order accuracy is preserved. Utilizing the results th&®) ¢an be written as

, FU7)

iy

= Ujs1 + Uj_1 — 2Uj + VE(U;, Ujys, Ujios) T + O(h?), (27)

wheres = 1 if the solid-fluid interface lies at the negative side of thuid; other-
wises = —1.

EIA 3 3 1
V9 =3[} 33 )
wheree is the normalized distance from the cell center to the siblid-interface,
€ = % — bin Fig. 1 (b). In the next section, these definitions are galirad to
multi-dimensional space as in (33) and (34) wite min(e, € 4)-

(28)

Approximation of the second order derivative by GCA can be ipto similar
forms:

2
,deu(y;)

h Y

= Uje1 + Ujog — 2Uj + VOOK(U;, Ujys, Ujias) T + O(MY), (29)

where

VOCI(g) = (—26, 2e—1, o); (30a)
€— 1, _26 -1 .
e+1 e+ 2

VCCYe) = (o, 3 (30b)

3.2 Laplacian discretization

Hereafter we expand our notation Bedimensional space. For exposition conve-
nience, the computational domain is assumed to Iaeells in each dimension
with uniform grid sizeh. A cell is identified by a multi-index = (ig, i1, - ,ip_-1) €
ZP. A bijective mappingM : [0,N — 1]° — [0, NP — 1] sends a multi-index to a
scalar index:

M(i) = Dj N ig. (31)
The stencil to discretize the Laplaciar?zcc))perator is a seDof A multi-indices:
S(i) ={i+ae":a=-1,0,1;d=0,1--- ,D- 1}, (32)
where thedth component oé&” is one and all other components are 0.
Let 8 denote the compact set representing the solid phase(ianc(i + %) h the

center of celi, celli is

11
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(a) a slope as the irregular boundary. (b) a triangle solid inside the domain.

Fig. 3. Cell classification. Shaded area represents the pbhse. A solid cell marked by
‘o’ has its center inside the solid; an interface cell marked:bys close to the solid-fluid
interface; a fluid cell marked by’ does not need jump correction. To capture the geometry,
each interface cell also has a labeling vedpindicating the orientation of the nearby
solid and another pair of vectogs recording the normalized distance from its center to the
interface, as shown in Fig. 4.

Fig. 4. Capturing geometry of interface cells for Laplacthscretization. The thick solid
line segments represent the distances between the cedircamd the interface along a
certain axis in celi andi’. Intersecting the solid-fluid interface to dotted lineslgithe
sites of extrapolation targets, represented &y and ‘a’s. ‘o’s and ‘A’s represent physi-
cal quantities involved in approximatirlg || and[| £¢|] at these extrapolation targets,
respectively. The fact ofe’s and ‘a’s being distinct enables EJA to be locally one-dimen-
sional. In contrast, one-dimensional GCA extrapolatiof yield conflicting values at the
location represented bw'.

o afluid celliff Vj € S(i),X; ¢ B;
o aninterface cellff x; ¢ 8, but3j € S(i), x; € B;
e asolid celliff x; € B.

This classification is illustrated in Fig. 3. Discretizinget Laplacian operator in

12



the interface cells has to incorporate the jump conditioviich necessitate the
definition of a pair of vectors*, whosedth components are the normalized distance
between the cell center and the boundargatliong thedth axis:

. +0o0, i {XiiChedZCER+}ﬂB=(D

|_d = H + . - 2 (33)
inf {c e R* 1 x; + che” € B}, otherwise

and a sign vectos; whosedth component is

1, if e, <€
Sid = . Cid fid (34)

As shown in Fig. 4s; 4 indicates the relative orientation of the center of celhd
the nearby solid along theth axis while€?; stores the normalized distances. For
example, cell in Fig. 4 hase’; = +o, € < 1, ands; = 1; similarly, celli’ has
e;’o = +00, €, 4 < 1, ands o = 1.

Starting from the geometry information as above, the Laplaoperator can be
discretized as

h?v2U = AtU + @ + O(h%), (35)

whereAl e RN”N” includes the jump corrections adel e RN contains the do-
main boundary conditiond) € RN’ is the unknown vector ofi at cell centers
ordered by (31).

Because of the absence of crosS§eatentiation terms, the jump corrections can be
applied dimension by dimension. Algorithm 1 formalizesstiuea by assembling
At and @ from the geometrical information and boundary conditidnsthis al-
gorithm, each cell in the domain corresponds to one row'inLines 17-22 add
the jump correction (28) or (30) into the standard Lapladestretization in lines
9-16. Lines 17-22 operate only on interface cells whiledifel6 operate on both
interface cells and fluid cells. As for the solid cells, thearresponding rows are
left as zeros to reduce the number of elements to be storee ispiarse matridt,
which is justified by the assumption that the value of the umkmand its Laplacian

is identically zero in the solid phase.

Proposition 3 For an irregular solid-fluid interface, the matriA- produced by
EJA in Algorithm 1 is not symmetric but diagonally dominant.

PROOF. The asymmetry oAA" follows from the one-sidedness of the jump cor-
rection form (28). In Algorithm 1, a solid cell results in araerow and a fluid
cell a row with—2D on the diagonal and[2 1's on other non-diagonal columns.
As for an interface celle € (0, 1) for somed. Since the jump corrections are ap-
plied dimension by dimension, it fiices to show that the cfiecient ofu; in (28)

13



1
2

Input : B:aD-dimensional compact set representing the solid phase;
N: number of cells in each dimension;
h: grid size;
emin: @ small number for controlling the condition numberrdf,
M: a bijective mapping from multi-indices to scalar indices;
Usa(X) : boundary condition at theéomain boundary

Output: Atand® : h?V2U = AU + @ + O(h%).

Al — ONDxND D — OND
foreach celli inside the domaindlo

s | ifxi=(i+3)h¢ Bthen

4 computee” ands; using (33) and (34)

5 if min, 4 €4 < €min then

6 | continue

7 end

8 ford=0,1,---,D-1do

9 Amiymi) < Amiyma — 2

10 foreach j =i + € do

11 if jisinside the domaithen

12 | Avgyme) < Ampmg + 1

13 else

14 ‘ q)M(j) — q)M(j) + UﬁQ(Xj)

15 end

16 end

17 € «— min(eifd, Efd)

18 if e<land max(eifd, f[d) > 2then

T T
Ak/l(i),M(i) Ak/l(i),M(i)
AII;/I(i),M(i+si_ded) < AII;/I(i),M(i+si,ded) + VEJA(G)

19 Akﬂ(i),M(iJrzsi,ded) AIKA(i),M(sti,ded)
20 else ife < 1then

21 \ use a smaller stencil out of the available data
22 end
23 end
24 end
25 end

Algorithm 1: Discretizing Laplacian operator by the EJA methw@ is
defined in (28). Alternatively, one can repla¢&™ with V¢ in (30) for a
GCA discretizationAr, , refers to the element a" at themth row and
mpth column. Similarly®, refers to themth element ofb.
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is dominant:
1-¢€

3(1-¢)
* 2+¢€

+1
e+1 ’

’2+ 3(1-¢
€

>il

which simplifies to (1- €)(6 + 2e — €2) > 0.

Whene =~ 0, the first jump correction term is very large and consedyeht
might have a very large condition number. One possible wwius to shift the
jump corrections away from the boundary to avoid large camalinumber ofA‘.
However, this method destroys the diagonal dominancA'ofind increases the
width of the jump correction stencil. Numerical experingesiich as the 2-D sphere
test in Section 4 show that this method can reduce the coeneegrate of EJA by
up to 0.8. Consequently, it is not adopted in Algorithm 1teasl, if the distance
from an interface cell center to the solid-fluid interfackeiss thare,nh, we simply
treat the interface cell as a solid cell, as shown in linesi®-Algorithm 1. Using
emin = 1074, the second order convergence rate of EJA is not influencellf@sts
in Section 4.

Algorithm 1 is general in the sense that replacifig” with VG recovers dime-
implicit GCA discretization that stores multiple ghost values imal& ghost cell.
Since this yields the best accuracy of GCA and encouragesimoglise, the results
of GCA in Section 4 are also obtained through Algorithm 1.

To preserve the symmetry @f, another type ofime-explicit GCA formulation
uses the standard Laplacian discretization without junmpections and incorpo-
rates the ffect of solid phase into the discretization by addingbtthe ghost cell
valuesuflq‘(tml) as defined in either (3) or (4). However, as is obvious iniSact
3.3, when the integralfiect of @ is approximatedu‘ffk(tml), the ghost value at
the end of the time step, is needed whereas this formulatioronly giveu®X(t,),
the ghost value at the beginning of the time step, becaussothgon att,,,, is not
available for extrapolation yet. An ad hoc workaround sets

U?fk(tml) = U(_Bfk(tn)- (36)

We shall denote this time-explicit formulation of GCA by ‘®E’ to distinguish it
from the time-implicit formulation of GCA defined by (29) a80). At first sight
the symmetry ofAl is attractive because the time-marching matriBés) and
B(r,) in (44) are symmetric positive-definite. However, as wéldemonstrated in
Section 4.2, this formulation is susceptible to instaieitit especially in the GC1E
case.
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3.3 Time Integration

Algorithm 1 transforms (1) into an ODE system,

% = AU(t) + Y(1), (37)
whereA = AL and'¥(t) = f(t) + @(1). Itis well-known that (37) satisfies the
following recurrence relation

1

U(tner) = EXpAtA)U (L) + f exp((tn+1 - s)A)‘I’(s) ds. (38)

For the standard®Laplacian stencil, the eigenvaluesAtfA are
D-1
VAt . 5 {4
An =~ ésmz 5 (39)

wherely € (0, 7). In the asymptotic range df — 0, 1za < 0, and the truncation
error of discretizing the diusion term are damped very quickly through exig)
in (38). However, whemr is very small, so are the absolute valuesigh. Conse-
guently, the damping of truncation errors takes a much Iotigee. This argument
on the diference system (37) formalizes remark (lll) in Section 2.

For time integration, a family of widely-used methods isdzhen the Padé approx-
imation of the exponential function in the RHS of (38). Thellvk@mown Crank-
Nicolson method (C-N) is such an example. However, sincel@®a symbol that
tends asymptotically to -1, it is only neutrally stable ahé humerical solution
exhibits oscillatory behaviors for discontinuities intial and boundary conditions
[7]. McCorquodale et al. [15] showed the instability of C-M & moving bound-
ary calculation. Section 4.2 shows that C-N coupled with &@&knot stable for a
strongly transient flow. One reason of this instability iatt68-N does notféectively
damp out the errors when the grid size is small.

In contrast, the method proposed by Twizell, Gumel, and A(DGA) [19] is Lo-
stable, i.e., its symbol tends asymptotically to zero. Ibésed on a (2,1) Padé
approximation of the exponential function

exp(AtA) = B~ (r)B71(r,)B(a — 1) + O(At®), (40)

where
B(y) = | — yAtA, (41)
a — (a? - da + 2)1/? a+ (a? - da + 2)V/?
r = ) Mo = )
2 2
anda is in the range o % 2 — /2). This choice ofo ensures second-order accu-
racy, Lo stability and the use of only real arithmetic. In practieas chosen to be

(42)
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as large as possible to minimize the truncation error. Iswuork,« = 0.58 is used
for TGA. Note that setting = 0.5 reduces TGA to C-N. In this work, C-N is only
used in Section 4.2 to demonstrate the instability of timglieit GCA; elsewhere
TGA is always used.

Approximating the integral in the RHS of (38) by a trapezoidde [17,19]:

f exp{ (1= 9A)H(S) ds = BB (1) (1) +B(2a-1)¥ (1) |+O(AL)

(43)
the ODE (37) can be solved by

B(r2)B(r)U™! = B(a — 1)U" + %(‘P(tn) + B0 - 1)‘I’(tn+1)). (44)

At each time step, advancing (37) requires solving two lirsyatems to ensuie,
stability. It is clear from (38), (40), and (43) that TGA iscead-order accurate in
time.

Proposition 4 For EJA, B(y) with y > O is strictly diagonally dominant for both
regular and irregular solid-fluid interfaces.

PROOF. The regular case holds becausegcat 0, v > 0, the definition (41), and
the fact thatA- becomes the standard discretization with the diagonailesnas
—2D. The irregular case follows from Proposition 3.

By the Gershgorin circle theorem, a strictly diagonally dioamt matrix is non-
singular. Furthermore, since all the diagonal entrieB(0f) andB(r,) are positive,
the real parts of the eigenvalues of them are non-negative.

3.4 Solution Procedure

In summary, EJA solves theftlision equation (1) witstationarysolid-fluid inter-
face as follows:

Step 1. assembl&" by Algorithm 1 from the geometry of the solid phase;
Step 2. setinitial conditiob (to);

Step 3. computé(t), f(t) to evaluate the RHS of (44);

Step 4. solve the two linear systems in (44) to advance thgisol|

Step 5. repeat Step 3 and Step 4 until the final tigne reached.

The solid-fluid interface being stationary implies tiédt is time-independent and
hence should be assembled before the time loop; in conrasttime-dependent
and should be updated at each time step.
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4 Numerical Experiments

In a computational domain [@]°, the difusion equation (1) is numerically solved
following the procedures outlined in Section 3.4 witft) and the initial condition
u(x, to) set by exact solutions. As discussed in Section 3.2, thedemy condition
is also set by exact solutions through the assemblidgiafAlgorithm 1. The jump
conditions at the solid-fluid interface are fulfilledi@irently by EJA and GCAs, as
formulated in Section 3. Comparing these methods on thigcpéar issue is exactly
the main purpose of this section.

Hundreds of test cases are performed on successively rafimtmm grids with
varying viscosity logy,(1/v) = 0,1,2,3,4,5,6. The number of cells along each
dimension isN = 10, 20,40,80,160 in 1-D and 2-D tests ard = 8,16,32 in 3-D
tests. Spatial and temporal grids &re- <, At = . The initial timet, = 20 and
the final timet. = 21.

The convergence rate is defined as

_ IE(N)I
0= |ng m, (45)

whereE(N) denotes the error vector between the numerical resultghandxact
solution at the end of the calculatitya The error ratios of GC1 and GC2 to EJA is
measured by

s 1on VEIS® e IEIS 46
1 - OglOW’ 0 - OglO||E||EJA‘ ( )

They also indicates the order-of-magnitude by which EJA @saraccurate than a
GCA.

4.1 Setup

Numerical tests are performed in one-, two- and three-dgio@al spaces. The
setup of one dimensional tests is shown in Fig. 1 (b). For dimoensional tests,
one setup is the simple slope shown in Fig. 3 (a) and the othénea circular
shape shown in Fig. 5 (). In the three-dimensional testssahd phase is a sphere
{x D VXX < g}. Cell classification on a®grids for this setup is shown in Fig. 5

(b).

As explained in Section 2, single-Fourier-mode solutiaesasuficient for exam-
ining the converging behavior of GCA, thus we choose expbaldunction forms
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(a) 10x 10 grids. (b) 5x 5x 5 grids.

Fig. 5. Spherical setup for 2D and 3D tests. Dwalls are centered at the origin with a
radius ast. The circular curve in (a) represents the fluid-solid irge€f. The solid cells are
marked by 6’ and the interface cells by:’. Two solid cells within each other’s stencils are
connected with solid line segments; two interface cellhwashdot segments; an interface
cell and a solid cell with dotted segments.

as exact solutions. For 1-D tests, the exact solution is,

expga(y — 1+ct ) -1 y>
P L DI B R -
Y<YVYs
The 2-D slope tests have the exact solution as
"exga(l+ct ) - X >0
u(x,y, t) = X XF( (L+ey)=x"y , (48)
0 y <0
where the coordinatex’(y’) relate to the original coordinates, /) as
X Ccosh sSiné || X — X
= , (49)
y —sing cosd y
with Xs = 75 andé = g as shown in Fig. 3 (a).
The exact solution of the 2-D and 3-D sphere tests is
exga(l +ct)(x - —rz)—l, X > 12
U, 1) = x;:( 1+ )(x X ) XX > ’ (50)

0 XX <r?

with r = Z. The forcing terms for the above exact solutions can beyedsiiived
from the governing equation (1).

(G210
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Fig. 6. Plots of (47) witha = 0.5 andyg = 0. The horizontal and vertical axis aye
andu, respectively. The solid, dotted and dashed lines correfptot = 20, 20.5, 210,
respectively.

In Fig. 6, (47) is plotted witta = 0.5, yg = 0, andc = 1, 0.01 at three time in-
stances. Ag increases, the time scale of the flow decreases and the flawriesc
more transientc = 1 is used in Section 4.2 to show that time-explicit GCA might
be unstable for strongly transient flows. In Section 4.3 aecti6n 4.4, when com-
paring the accuracies of EJA and GCA, a small valte0.01 is chosen for all tests
to make the temporal change of the flow slow so that the ermrseeanainly from
discretizing the spatial ffusion term. In all testa = 0.5 is fixed. These parameters
are carefully chosen to make both the velocity scale andethgth scale unit size
so that a Reynolds number can be conveniently defined as

Re= <. (51)

4

4.2 Instability of time-explicit GCA

When (36) is used in the time-explicit GCA, a temporal erfo©@t?) in addition
to the spatial error is introduced into the solver. Althoegleh of them is of a lower
dimension, when coupled together, they can cause ingtatuifi strongly transient
flows.

In Table 1, it is shown that both GC1 and GC2 are unstable ®trdmsient flow
case withc = 1 if time discretization uses C-N. When C-N is replaced by TGA
Table 2, GC2 is able to generate stable solutions while GG&tilisinstable.

The symmetry of the linear solver is often considered as aaradge of the time-
explicit GCA, however, this might make the solver suscdettb instabilities for
transient flows. Thus, a more sophisticated approximatohfe ghost cell value
at the next time step is needed in order to simultaneousiyrratability and the
symmetry of the linear solver. Hereafter only TGA is usednmetintegration.
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Table 1

Error norms of 1-D tests witb = 0, v = 1, ¢ = 1 and Crank-Nicolsona{ = 0.5).

Method | [E(10)li. ~ O1  |E(20)h O1 [E(40)ls O1  |E@ON1  O1 |[E(160))1
GCI1E | 3.95e+03 -30.98 8.37€12 -117 1.49e48 -259 1.06e126 -552 1.65€292
GC2E | 3.95e+03 2.35 7.75e02 2.20 1.69e02 -45 4.71el6 -406 7.50e138
EJA | 4.15e+03 2.38 7.95e02 2.21 1.72¢02 2.11 3.97¢01 2.06 9.54e00
Method | [E(10)le O  IIE(20)lw O [E(@4O0)le Ox  IE@BO)le O  [IE(160)ls
GCI1E | 6.62e+03 -34.20 1.31lel4 -118 3.53e49 -259 3.75e127 -553 8.55€293
GC2E | 6.62e+03 2.34 1.31e03 2.19 2.88e02 -53 2.83el8 -406 5.04e140
EJA | 6.69et03 2.35 1.32¢03 2.19 2.89e02 2.10 6.74e01 2.05 1.63e01
Table 2
Error norms of 1-D testswith=0, v =1, c= 1 and TGA ¢ = 0.58).
Method | [[E(10)ls O1 |IE(20). O1 [E(40)l»  O1  [E(@BON:  O1  [E(160)I
GCI1E | 3.95e+03 2.35 7.75€02 2.11 1.79¢02 -37.58 3.68el3 -69.44 2.96e34
GC2E | 3.95e+03 2.35 7.75€02 2.20 1.69€¢02 2.10 3.94e01 2.05 9.49¢00
EJA | 4.15e+03 2.38 7.95€¢02 2.21 1.72¢02 2.11 3.97¢01 2.06 9.54e00
Method | [E(10)le Ow I[E(20)le Ow [E(40)lo Ox IE@BO)le O  lIE(160)ls
GCI1E | 6.62e+03 2.34 1.31e03 2.19 2.88¢02 -41.49 8.87el4 -69.89 9.73e35
GC2E | 6.62e+03 2.34 1.31e03 2.19 2.88¢02 2.10 6.73e01 2.05 1.63e01
EJA | 6.69er03 2.35 1.32¢03 2.19 2.89¢02 210 6.74e01 2.05 1.63e01

4.3 Accuracy and convergence : mid-range Reynolds numbers

We first show the existence of velocity jumps in Fig. 7, whéefinal solutions of
EJA for a 2-D slope test and a 2-D sphere test are plotted &scssrover 4 40
grids. The lighting clearly illustrates the derivative jpmof the solution at the
solid-fluid interface.

For the 1-D tests, Table 3 shows the results for the regulandary casd = 0
with v = 1073, It is clear that GC1 is much less accurate than GC2, which is i
turn less accurate than EJA. In the case of GC1, the grid sigedhbe reduced to
the finest in order for it to reach second-order convergenie.convergence rate
of GC2 also varies with the grid size and is close to 3 on theftmest grids. In
contrast, the convergence rate of EJA is steadily at 2 régggdf the grid size.
These observations confirm the remarks (1) and (V) in Se@ion

In Table 4, the error norms of the same test cases of Tablerg-awluated within
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Table 3

Error norms of 1-D tests with = 0, v = 1073, ¢ = 0.01

Method | [[E(10)ls O1 [E(20)l. O:1 IE40)Np1 O1 E(BO)» O:1  IE(160)IL
GC1 | 8.33e-06 1.34 3.29e-06 1.75 9.78e-07 1.95 2.53e-07 1.99 7e@8
GC2 | 1.25e-06 221 2.69e-07 2.53 4.67e-08 2.72 7.06e-09 2.606e09
EJA 1.41e-07 1.99 3.56e-08 1.98 9.01e-09 2.00 2.25e-09 2.002eH6

Method | [E(10)le O IE(20)lo Ox [E(40)l O« IEBO)lw O IE(160)le
GC1 | 7.85e-05 0.54 5.40e-05 1.31 2.18e-05 1.78 6.33e-06 1.919eD6
GC2 | 1.06e-05 1.44 3.90e-06 2.18 8.58e-07 2.82 1.22e-07 2.920eD8
EJA 1.85e-07 1.98 4.70e-08 2.00 1.18e-08 2.00 2.94e-09 2.00 5e-13

Table 4
Error norms of 1-D tests near the interfages([0,0.2]) withb =0, v = 1073, ¢ = 0.01

Method | [IE(10)ls O1 [E(20)l. O1 IE40)N: O1 IE(BO)» O:1  IE(160)IL
GC1l | 4.11e-05 1.33 1.63e-05 1.75 4.85e-06 195 1.25e-06 1.996ed1
GC2 | 5.59e-06 223 1.19-06 2.61 1.94e-07 292 257e-08 2.910e89
EJA 7.56e-08 1.84 2.11e-08 1.79 6.12e-09 194 1.60e-09 1.984e40

Method | [E(10)e Ow IEQO)Mle Ow IE@ONle Ow IIE(BOfl Ow  IE(160)
GC1 | 7.85e-05 0.54 5.40e-05 1.31 2.18e-05 1.78 6.33e-06 1.919e1D6
GC2 | 1.06e-05 1.44 3.90e-06 2.18 8.58e-07 2.82 1.22e-07 2.920eD8
EJA 1.13e-07 1.89 3.05e-08 1.99 7.69e-09 1.99 1.93e-09 2.003e48

Table 5
Error norms of 1-D tests with = 0.2, v = 1073, ¢ = 0.01

Method | [IE(10)l. O1 [IE(20)ls O1 lE(40)l.  O1 |E(@BO)l» O1 [IE(160))1
GC1 | 2.08e-05 1.29 8.47e-06 1.71 258e-06 199 6.51e-07 2.030eDB
GC2 | 1.67e-06 2.23 3.56e-07 2.63 5.75e-08 2.85 8.00e-09 2.675eN2
EJA 1.43e-07 2.01 3.55e-08 1.99 8.96e-09 2.00 2.25e-09 2.001leH6

Method | [E(10)le O« [E(20)le Ox [E@40)le Ox IE@BO)lo O IIE(160)le
GC1 | 1.97e-04 0.49 1.40e-04 1.27 5.80e-05 1.84 1.62e-05 1.941led@
GC2 | 1.46e-05 145 535e-06 230 1.09e-06 2.93 1.42e-07 2.963e08
EJA 1.83e-07 1.97 4.67e-08 1.99 1.17e-08 2.00 2.94e-09 2.005e-13
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Table 6

Derivative error norms of 2-D slope tests with= 103, ¢ =0.01.

Method | IE-(10)l1 O1 E-(20)l1 O1 l[E;(40)ln O1 |E:(80)lx O1 [E(160)1
GC1 5.93e-03 0.87 3.25e-03 057 2.18e-03 1.00 1.09e-03 1.09 2e®4
GC2 2.06e-03 196 5.29e-04 205 1.28e-04 2.07 3.05e-05 2.02 4e-06
EJA 2.02e-03 2.08 4.79e-04 201 1.19-04 2.05 2.88e-05 2.00 Oe-0@

Method | I[E-(10)lc O  lEx(20)l O [E:(40)lw Ow IE-(80)le O  IE+(160)lw
GC1 1.24e-02 0.70 7.67e-03 0.54 5.26e-03 0.96 2.70e-03 1.11 5eD2
GC2 2.71e-03 1.81 7.73e-04 209 1.81e-04 1.85 5.03e-05 2.08 9eD3
EJA 2.69e-03 2.06 6.45e-04 2.03 1.58e-04 2.03 3.88e-05 2.00 9eD6

Table 7
Derivative error norms of 2-D sphere tests wite 10°2, ¢ = 0.01.

Method | [E-(10)l1 O1 IE-(20)li O1 lE:(40)li O1 [E(80)l1 O1 |E-(160)1x
GC1 1.13e-02 -1.03 2.32e-02 1.67 7.28e-03 0.60 4.80e-03 0.9843eA3
GC2 2.01e-02 2.00 5.01e-03 2.30 1.02e-03 2.32 2.04e-04 2.18 9e48
EJA 1.50e-02 2.26 3.15e-03 2.15 7.11e-04 2.10 1.65e-04 2.02 6e4H

Method | [E;(10)lc Ox lE:(20)lc O« lE;(40)le O« [E:(80)le O  IE-(160)|w
GC1 3.95e-02 -0.09 4.19e-02 0.74 2.52e-02 0.39 1.92e-02 1.0340e93
GC2 2.76e-02 197 7.04e-03 224 1.49e-03 2.15 3.36e-04 2.05 led3
EJA 1.80e-02 2.19 3.97e-03 2.09 9.34e-04 2.06 2.23e-04 2.04 2eD8

Table 8
Derivative error norms of 3-D sphere tests witk 1073, ¢ = 0.01.
Method | IE-(8)l1 O1 IE(16)l1 O1  IE:(32)x
GC1 | 3.07e-02 0.32 2.45e-02 0.57 1.65e-02
GC2 | 3.20e-02 198 8.09e-03 2.29 1.65e-03
EJA 2.62e-02 236 5.09e-03 2.19 1.11e-03
Method | [E:8)le Ow IE:(16)le O  IE+(32)lw
GC1 | 559e-02 -0.48 7.81e-02 -0.20 8.95e-02
GC2 | 5.04e-02 181 1.44e-02 2.26 3.00e-03
EJA 3.51e-02 221 7.61le-03 2.10 1.77e-03
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(a) A 2-D slope test.

(b) A 2-D sphere test.

Fig. 7. Surface plots of the final solutiarfx, te) of EJA on 40x 40 grids.v = 1073, The
parallel lighting shows the jump af(x, t;) at the solid-fluid interface.

a distance to the solid-fluid interface instead of over thel&lklomain. Comparing
Table 4 to Table 3, it is clear thahe maximum error of GC1 and GC2 always
happens near the interfadecausdE||., remains the same for GC1 and GC2 and
the averaged errors of GC1 and GC2 near the interface ardlgofige times as
large as those over the whole domain. This is due to the fatwitihin each time
step, GC1 and GC2 commit errors@f1) andO(h), respectively, near the interface,
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as shown in (6). Apart from deteriorating the accuracy awaynfthe boundary
by perturbing the linear systems in (44), these errors nemaar the solid-fluid
interface. Therefore, if the flow near the solid-fluid intex¢ is of interests, EJA is
an much better choice than GC1 and GC2.

Table 5 shows the results for an irregular boundary case-00.2 with otherwise
the same configuration as Table 3. Comparing Table 3 to Tablee®rrors of EJA
remain almost the same while those of GC1 roughly triple witthensolid-fluid
interface changes from regular to irregular. Thus, EJA isemiodependent to the
location of the interface than GC1 and GC2.

Let E, denote the error of the sum of the derivatiyes ‘9—)2, evaluated from the
solution ofu. Table 6, Table 7, and Table 8 li&t for the 2-D slope tests, the 2-
D sphere tests and the 3-D sphere tests, respectively. thrak tests, GC2 has
roughly the same accuracy with EJA while GC1 is much lessrateuespecially

in the 3-D sphere tests.

Aside from a better accuracy, EJA is a better choice fromfaciency viewpoint,
since EJA prevents local errors near the boundary from beisigibuted to the
whole domain, i.e., a lower-dimension operation helps tluce errors in a higher-
dimension space.

4.4 The accuracy and convergence of GCA depend on viscosity

For practical applications, it is necessary to examine tha €lependence on vis-
cosity, or equivalently, the Reynolds number defined in.(3t)this end, the error
norms of Re= 1, 10%, 1 are shown in Table 9, Table 10, and Table 11 for the 2-D
slope tests; Table 12, Table 13, and Table 14 for the 2-D spiests; Table 15,
Table 16, Table 17 for the 3-D sphere tests. The error rasaefined in (46) are
plotted in Fig. 8 and in Fig. 9 for the 2-D slope tests. Qualitdy the same as Fig.

8 and Fig. 9 are the error ratio plots of the 1-D tests and tBbesphere tests, which
are not repeated here. Since EJA is always second-orderaéesndependent of
grid size and viscosity, a constaRE™ implies second-order convergence. Simi-
larly, an increasing curve ®#°% implies convergences worse than second order.

In Fig. 8, all the error ratios increase as Re increasespexicat in Fig. 8 (c) the
1-norm error ratio of GC2 to EJA appears to have an asympfatighly 6.5 (this
asymptote is about 13 for the 1-D tests) regardless of tidesgze. This implies that
GC2 is second-order accurate in the 1-norm sense, whicmfgwed in Table 11,
Table 14, and Table 17. It is also speculated that the valtleeaisymptote depends
on the flow type. The most interesting cases are those of R&, 10°, 10°: in Fig.

8 (a), (b), & (d), where error ratios of GCA to EJA increasestasgrid size is
reduced. Thus, within the range of shown grid sizes, the@g®ance rates of GC2
in co-norm and those of GC1 in both 1-norm asdnorm are all less than 2. In
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Table 9

Error norms of 2-D slope tests with= 1, ¢ = 0.01.

Method | [IE(10)l.. O1 [IE(20)ls O1 lE(40)l.  O1 |E@BO)Jl1 O1 [IE(160))1
GC1 | 1.59e-04 3.32 1.59%e-05 2.32 3.17e-06 240 5.99e-07 2.367ed1
GC2 | 291e-05 2.73 437e-06 255 7.48e-07 2.33 1.49e-07 2.196ed2
EJA 9.45e-06 2.18 2.08e-06 2.10 4.85e-07 2.06 1.17e-07 2.03 6eD8

Method | [E(10)le O IE(20)le Ox [E(40)l O« IEBO)lw O IE(160)le
GC1 | 1.32e-03 252 2.30e-04 150 8.15e-05 190 2.19e-05 2.155e48
GC2 | 7.37e-05 2.76 1.09e-05 3.03 1.33e-06 225 2.79e-07 2.121e®8&
EJA 1.74e-05 2.09 4.08e-06 2.05 9.83e-07 2.03 241e-07 2.016eR8

Table 10
Error norms of 2-D slope tests with= 1073, ¢ = 0.01.

Method | [IE(10)ls O1 [E(20)l. O1 IE40)N: O1 IE(BO)» O:1  IE(160)IL
GC1 | 2.56e-05 221 5.53e-06 244 1.02e-06 2.78 1.48e-07 2.67 4eD8
GC2 | 1.45e-06 227 3.02e-07 2.73 4.55e-08 2.61 7.46e-09 2.465e03
EJA 2.26e-07 2.01 5.61e-08 2.01 1.40e-08 2.02 3.45e-09 2.014e46

Method | [E(10)le O I[E(20)le Ox [E(40)l O« IE(BO)lw O IIE(160)Ie
GC1 | 4.97e-04 1.38 1.91e-04 1.33 7.62e-05 1.83 2.15e-05 2.132e46
GC2 | 2.03e-05 1.71 6.22e-06 2.56 1.06e-06 2.79 1.53e-07 2.851leda
EJA 2.97e-07 198 7.54e-08 2.00 1.89e-08 2.00 4.71e-09 2.008eM9

Table 11
Error norms of 2-D slope tests with= 108, ¢ =0.01.

Method | [IE(10)ls O1 [E(20)l. O1 IE40)pr O: IE(BO)» O1 IE(160)IL
GC1 | 3.34e-08 1.47 1.21e-08 0.91 6.45e-09 1.15 2.89%-09 1.141e18
GC2 | 1.59-09 191 4.21e-10 212 9.70e-11 197 2.47e-11 2.011ed2
EJA 2.39%e-10 1.99 6.02e-11 2.00 1.50e-11 2.00 3.75e-12 1.989e493

Method | [E10)le  Ow IEQO)le O  [E(4O0)le O  IIE(80)le Ow  IIE(160)
GC1 | 6.74e-07 0.50 4.75e-07 -0.49 6.69e-07 -0.07 7.03e-07 0.2107e&7
GC2 | 2.46e-08 0.78 1.43e-08 1.02 7.08e-09 0.98 3.58e-09 1.01 8eD9
EJA 3.19e-10 1.72 9.69e-11 2.11 2.24e-11 2.13 5.12e-12 1.92 5e13
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Table 12

Error norms of 2-D sphere tests with= 1, ¢ = 0.01.

Method | [IE(10)l.. O1 [IE(20)ls O1 lE(40)l.  O1 |E@BO)Jl1 O1 [IE(160))1
GC1 | 8.44e-04 250 1.49e-04 1.85 4.13e-05 259 6.88e-06 2.155eMD6
GC2 | 9.44e-04 261 1.55e-04 2.34 3.07e-05 2.16 6.89e-06 2.092e1D6
EJA 5.64e-04 224 1.20e-04 214 2.73e-05 2.08 6.44e-06 2.047e16

Method | [E(10)le O IE(20)le Ox [E(40)l O« IEBO)lw O IE(160)le
GC1l | 6.22e-03 1.95 1.62e-03 249 2.88e-04 137 1.12e-04 1.818ed3
GC2 | 1.43e-03 234 2.83e-04 2.18 6.25e-05 2.07 1.48e-05 2.040eR6
EJA 1.15e-03 2.17 2.55e-04 2.09 5.99e-05 2.05 1.45e-05 2.026eR6

Table 13
Error norms of 2-D sphere tests with= 103, ¢ =0.01.

Method | [IE(10)ls O1 [E(20)l. O1 IE40)N: O1 IE(BO)» O:1  IE(160)IL
GC1 | 1.49e-04 154 5.14e-05 2.75 7.61e-06 1.68 2.38e-06 2.27 3e4Q9
GC2 | 5.25e-05 2.37 1.02e-05 246 1.85e-06 2.24 3.90e-07 2.182e88
EJA 2.08e-05 199 5.23e-06 2.02 1.29e-06 2.03 3.14e-07 2.025e-08

Method | [E(10)le O I[E(20)le Ox [E(40)l O« IE(BO)lw O IIE(160)Ie
GC1 | 2.11e-03 0.72 1.28e-03 2.16 2.87e-04 1.36 1.12e-04 1.818ed4
GC2 | 3.68e-04 2.02 9.07e-05 2.74 1.36e-05 2.72 2.06e-06 2.931leN7
EJA 5.44e-05 2.04 1.32e-05 199 3.33e-06 2.02 8.23e-07 2.014eD0

Table 14
Error norms of 2-D sphere tests with= 108, ¢ =0.01.

Method | [IE(10)ls O1 [E(20). O1 IE40)pr O: IE(BO)» O1 IE(160)Iy
GC1 | 1.76e-07 0.94 9.21e-08 1.62 3.01e-08 0.60 1.98e-08 1.009e98
GC2 | 5.60e-08 2.16 1.25e-08 2.21 2.70e-09 1.84 7.53e-10 2.052e18
EJA 2.22e-08 1.97 5.65e-09 2.00 1.41e-09 2.00 3.54e-10 2.007ed48

Method | [E10)le  Ow  IE@O)w On IE(@O)ke On IIE(8ONe Ow  IIE(160)
GC1 | 2.61e-06 -0.01 2.63e-06 0.28 2.17e-06 -0.40 2.86e-06 0.0184eD6
GC2 | 4.50e-07 1.29 1.85e-07 1.12 8.47e-08 0.72 5.13e-08 1.03 0e-:D8§
EJA 6.08e-08 1.86 1.68e-08 1.93 4.41e-09 197 1.13e-09 2.010e28
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Table 15

Error norms of 3-D sphere tests with= 1, ¢ = 0.01.

Method | [IE(8)l1 O1 IE(16)l.  O1  IE(32)I
GC1 | 2.17e-03 2.73 3.27e-04 2.33 6.52e-05
GC2 | 1.78e-03 2.45 3.25e-04 2.27 6.74e-05
EJA | 1.53e-03 2.36 2.98e-04 2.21 6.46e-05
Method | IE()lc Owx IIE(16)le O  IIE(32)lw
GC1 | 5.33e-03 1.33 2.11e-03 1.69 6.55e-04
GC2 | 3.58e-03 222 7.70e-04 2.13 1.76e-04
EJA | 3.47e-03 2.20 7.54e-04 2.11 1.75e-04
Table 16
Error norms of 3-D sphere tests with= 1073, ¢ = 0.01.
Method | |IE(8)l. O1 I[E(16)li O1 [E(32)1
GC1 | 1.44e-04 191 3.85e-05 2.18 8.52e-06
GC2 | 7.41e-05 211 1.72e-05 2.19 3.76e-06
EJA | 5.55e-05 2.03 1.36e-05 2.05 3.29e-06
Method | [E(8)le O IE(16)lc O  IE(32)le
GC1 | 1.68e-03 0.01 1.66e-03 1.35 6.53e-04
GC2 | 4.67e-04 1.68 1.46e-04 2.60 2.39e-05
EJA | 2.07e-04 2.11 4.78e-05 192 1.26e-05
Table 17
Error norms of 3-D sphere tests with= 108, ¢ =0.01.
Method | |[E(8)l.  O1 l[E(16)li  O1  [E(B2)
GC1 | 1.67e-07 1.44 6.17e-08 1.13 2.83e-08
GC2 | 7.74e-08 2.01 1.93e-08 2.02 4.76e-09
EJA | 575e-08 1.99 1.45e-08 2.00 3.63e-09
Method | [E(B)lc Owx IIE(16)le Ow IE(B2)w
GC1 | 2.27e-06 -0.62 3.48e-06 -0.23 4.08e-06
GC2 | 5.62e-07 0.89 3.03e-07 0.91 1.61le-07
EJA | 2.31e-07 1.77 6.76e-08 1.88 1.83e-08
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(d) RS

Fig. 8. 2-D slope tests error ratios of GC1 and GC2 to EJA wapect to grid resolution
and the Reynolds number in (51). The horizontal and vertiza are log, Re andR®™

as defined in (46) respectively”, ‘X', ‘o', ‘o', * represent N = 10,20,40, 80, 160,
respectively. An increasing curve implies convergencesedinan second-order. The value
of a vertical coordinate is the order-of-magnitude by whinh GCA is less accurate than
EJA.

Table 11, Table 14, and Table 17, GC2 shows first-order cgenee in thex-
norm while the convergence of GC1 in thenorm is oscillating around 0. This
confirms remark (1) of Section 2. It can also be deduced th#t@agrid sizes used
in Tables 9 - 17 and Fig. 8 are bigger thag,. Comparing Table 9 to Tables 10 &
11, or Table 12 to Tables 13 & 14, or Table 15 to Tables 16 & 1& dé&pendence
of accuracy and the convergence rate on viscosity is obvimuboth GC1 and
GC2. This behavior of GCA is also confirmed in Fig. 9 in that #hepe of the
curves increases as Reynolds number is increased. Thespléyeaemark (1) of
Section 2.

To examine the dependencehgfi on viscosity, we perform more calculations on
finer grids and present the results in Fig. 9, whféX is plotted against the grid
size. According to the analysis in Section®E™ should first increase and then, at
a critical grid sizehyi;, decrease or remain a constant thereafter.
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Fig. 9. 2D slope test convergence rates of GC1 and GC2 withecédo the Reynolds
number as defined in (51). The horizontal axis iszlﬁ%g with Ng = 10; the vertical axis
is RE* as defined in (46).4, ‘¢’, *', and * o’ representRC?, RECL, REC2 and REC2
respectively. An increasing curve implies convergenceswdhan second-order while a
decreasing curve implies convergence better than seaoled-orhe value of a vertical
coordinate is the order-of-magnitude by which the GCA is escurate than EJA.
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At low-Reynolds number in Fig. 9. (a) & (b), the grid size isdfianough so that
GC2 has the same accuracy of EJA and even GC1 has seconc:ongtergence,
although its accuracy is less satisfactory by several estlenagnitudes. Because
viscosity is big enough to damp out all the high frequency espanost curves of
RE* do not have an ascending part, eveng§F* that does have an ascending part,
the increase is small. For mid-range Reynold numbers, ttending parts become
evident in Fig. 9. (c) & (d), which confirms thét,; decreases as the Reynolds
number increases. In Fig. 9. (e) & (f), the curves have noeatetiag parts, imply-
ing that even the smallest grid sigé\l—o is still bigger thanhy;;. Note that at this
resolution, the accuracy of EJA in the 1-D tests and the 2epestests is already
close to machine precision for high Reynolds numbers.

Although GCAs can be second-order accurate or even betten gimall enough
grid sizes, their errors are much larger than that of EJA indewange of grid sizes.
This is particularly true for GC1. Furthermore, becausefted computational
resourceshgir can be unrealistically small, depending on the particylpe tof the
viscous flow. As an example, for = 1075, second-order convergence rates are
impossible to show for theo-norms of GC1 and GC2, given the length of the
mantissa of a double-precision floating number.

Aside from the analysis, an interpretation based on phlysitstion can also ex-
plain Fig. 8, and Fig